Pycnogenol Attenuates the Release of Proinflammatory Cytokines and Expression of Perilipin 2 in Lipopolysaccharide-Stimulated Microglia in Part via Inhibition of NF-κB and AP-1 Activation

نویسندگان

  • Bin Fan
  • Sai-Hong Dun
  • Jian-Qiu Gu
  • Yang Guo
  • Shoichiro Ikuyama
  • Stella E. TSIRKA
چکیده

Over activation of microglia results in the production of proinflammatory agents that have been implicated in various brain diseases. Pycnogenol is a patented extract from French maritime pine bark (Pinus pinaster Aiton) with strong antioxidant and anti-inflammatory potency. The present study investigated whether pycnogenol may be associated with the production of proinflammatory mediators in lipopolysaccharide-stimulated BV2 (mouse-derived) microglia. It was found that pycnogenol treatment was dose-dependently associated with significantly less release of nitricoxide (NO), TNF-α, IL-6 and IL-1β, and lower levels of intercellular adhesion molecule1 (ICAM-1) and perilipin 2 (PLIN2). Furthermore, this effect was replicated in primary brain microglia. Levels of inducible NO synthase mRNA and protein were attenuated, whereas there was no change in the production of the anti-inflammatory cytokine IL-10. Further evidence indicated that pycnogenol treatment led to the suppression of NF-κB activation through inhibition of p65 translocation into the nucleus and inhibited DNA binding of AP-1, suggesting that these proinflammatory factors are associated with NF-κB and AP-1. We conclude that pycnogenol exerts anti-inflammatory effects through inhibition of the NF-κB and AP-1pathway, and may be useful as a therapeutic agent in the prevention of diseases caused by over activation of microglia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monascin ameliorate inflammation in the lipopolysaccharide-induced BV-2 microglial cells via suppressing the NF-κB/p65 pathway

Objective(s): The pathophysiology of neurodegenerative diseases is complicated, in which inflammatory reactions play a vital role. Microglia cells activation, an essential process of neuroinflammation, can produce neurotoxic molecules and neurotrophic factors, which aggravate inflammation and neuronal injury. Monascin, a major component of red yeast rice, is an azaphil...

متن کامل

Modulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells

Background: Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. Thi...

متن کامل

Kalopanaxsaponin A Exerts Anti-Inflammatory Effects in Lipopolysaccharide-Stimulated Microglia via Inhibition of JNK and NF-κB/AP-1 Pathways

Microglial activation plays an important role in the development and progression of various neurological disorders such as cerebral ischemia, multiple sclerosis, and Alzheimer's disease. Thus, controlling microglial activation can serve as a promising therapeutic strategy for such brain diseases. In the present study, we showed that kalopanaxsaponin A, a triterpenoid saponin isolated from Kalop...

متن کامل

Artemisinin Attenuates Lipopolysaccharide-Stimulated Proinflammatory Responses by Inhibiting NF-κB Pathway in Microglia Cells

Microglial activation plays an important role in neuroinflammation, which contributes to neuronal damage, and inhibition of microglial activation may have therapeutic benefits that could alleviate the progression of neurodegeneration. Recent studies have indicated that the antimalarial agent artemisinin has the ability to inhibit NF-κB activation. In this study, the inhibitory effects of artemi...

متن کامل

Prenatal zinc supplementation ameliorates hippocampal astrocytes activation and inflammatory cytokines expression induced by lipopolysaccharide in a rat model of maternal immune activation

Objective: There is evidence that gestational exposure to lipopolysaccharide (LPS) results in fetal zinc deficiency, and eventually neurodevelopmental abnormalities. In this study, we utilized a rat model of maternal immune activation (MIA) to investigate the possible neuroprotective effect of zinc supplementation throughout pregnancy on hippocampal astrocytes activation as well as inflammatory...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015